
Python Implementation of MPW (2023)

May 4, 2023

1 MPW (2023) MODEL SIMULATION

Primary Author: John Mantus

Last edited: 5/4/23 by JM

This file generates the projection estimates from A Unified Long-Run Macroeconomic Projection of
Health Care Spending, the Federal Budget, and Benefit Programs in the US by John Mantus, Gaobo
Pang, and Mark J. Warshawsky, published as an AEI Working Paper on 05/01/2023.

This is also the underlying code for the interactive dashboard found here: insert link if/when page
goes live

Abstract
In the official reduced form models used by the CBO, Treasury, and the Social Security and Medicare
Trustees for projections and policy analysis, many key variables, like real interest rates, health care
cost and economic growth, are assumed, often based on a continuation of past trends. By contrast, in
our model, these variables are outcomes produced by supply and demand, based on logical functional
forms and deep parameter estimates from the literature or empirical analysis. This latter approach
provides a more credible and realistic basis for projections with changing underlying conditions
and less subject to optimistic hopefulness. We find that, within the next five to ten years, the
deficit relative to national income will grow significantly beyond historical experience, and with
the prospect of continued increases, without policy changes, may be regarded as unsustainable. In
particular, we project that debt-to-GDP will be 132 percent in 2032, compared to CBO’s recent
projection of 115 percent. In 2052, we project 258 percent compared to CBO’s 189 percent. Our
projection of national health care spending relative to GDP in 2072 is 29.9 percent, compared to
28.4 percent by CMS, used by the Medicare Trustees. Longer term, our projections show even
worse outcomes for debt, deficits, Social Security, Medicare, and health care spending than official
projections, and declines in the rate of welfare improvement. These results mainly owe to higher
rates of health care inflation, arising from labor shortage effects because health care is produced in
a low productivity, labor-dependent sector, and real interest rates rise in the long-run because of
increasing debt, bringing about the vicious cycle of growing deficits and debt.

[12]: # Import packages needed for computations
import numpy as np # Handy for math
import sympy as sp # Can add precision and clarity to equations (not used␣
↪→currently)

import pandas as pd # For data storage
from scipy.optimize import fsolve # For solving systems of equations

1

https://www.aei.org/research-products/working-paper/a-unified-long-run-macroeconomic-projection-of-health-care-spending-the-federal-budget-and-benefit-programs-in-the-us/
https://www.aei.org/research-products/working-paper/a-unified-long-run-macroeconomic-projection-of-health-care-spending-the-federal-budget-and-benefit-programs-in-the-us/

2 Computing Health Care Elasticities

We include two health care elasticities; one with respect to income, the other with respect to the
relative price of health care, as compared to all other goods.

Baseline
- Income elasticity begins at 1.2, declines to 1.1 over first ten years, declines further to 1.0 over
next fifteen years, then declines to 0.9 over the next 25 years (50 years total), then is constant.
- Price elasticity declines from -0.5 to -0.56 over first ten years, then remains constant.

Alternative
- Income elasticity begins at 1.2, then changes linearly to the new value over the initial 10 years,
then remains constant.
- Price elasticity changes from -0.5 to the new value over first ten years, then remains constant.

[10]: # Below are the functions used to compute changes in the elasticities, described␣
↪→above

Baseline computations
def compute_inc_el_base(inc_el, fin_inc_el):

for t in range(len(years)):
if t < period1:

df_el.loc[t+1, 'Income_Elasticity'] = df_el.loc[t,␣
↪→'Income_Elasticity']-(inc_el-fin_inc_el)/(3*period1)

elif t < period1 + period2:
df_el.loc[t+1, 'Income_Elasticity'] = df_el.loc[t,␣

↪→'Income_Elasticity']-(inc_el-fin_inc_el)/(3*period2)
elif t < period1 + period2 + period3:

df_el.loc[t+1, 'Income_Elasticity'] = df_el.loc[t,␣
↪→'Income_Elasticity']-(inc_el-fin_inc_el)/(3*period3)

else:
df_el.loc[t+1, 'Income_Elasticity'] = df_el.loc[t,␣

↪→'Income_Elasticity']

def compute_pri_el(pri_el, fin_pri_el):
for t in range(len(years)):

if t < period1:
df_el.loc[t+1, 'Price_Elasticity'] = df_el.loc[t,␣

↪→'Price_Elasticity']-(pri_el-fin_pri_el)/(period1)
else:

df_el.loc[t+1, 'Price_Elasticity'] = df_el.loc[t, 'Price_Elasticity']

Alternative
def compute_inc_el_new(inc_el, fin_inc_el):

for t in range(len(years)):
if t < 10:

2

df_el.loc[t+1, 'Income_Elasticity'] = df_el.loc[t,␣
↪→'Income_Elasticity']-(inc_el-fin_inc_el)/(period1)

else:
df_el.loc[t+1, 'Income_Elasticity'] = df_el.loc[t,␣

↪→'Income_Elasticity']

[7]: # Computing and storing the health care elasticities in a DataFrame
df_el = pd.DataFrame(columns=['Year','Elasticity_Adj_Factor',␣
↪→'Income_Elasticity', 'Price_Elasticity'])

df_el['Year'] = years
df_el.loc[0, 'Income_Elasticity'] = inc_el
df_el.loc[0, 'Price_Elasticity'] = pri_el

period1 = 10 # Years
period2 = 15
period3 = 25

Currently detecting 'Alternative' based on income elasticity choice since␣
↪→price elasticity slider has not been implemented to dashboard

if fin_inc_el == 0.9: # Baseline
compute_inc_el_base(inc_el = inc_el, fin_inc_el = fin_inc_el)
compute_pri_el(pri_el = pri_el, fin_pri_el = fin_pri_el)

else: # Alternative
compute_pri_el(pri_el = pri_el, fin_pri_el = fin_pri_el)
compute_inc_el_new(inc_el = inc_el, fin_inc_el = fin_inc_el)

3 Demographics

Demographic projections from the Congressional Budget Office (CBO) play a large role in our
projections. Health care spending differs greatly by age and sex, with, e.g., women over the age of
65 spending more than any other group. Further, labor force participation varies with age and sex,
as well.

[25]: # Import CBO Demographic Projections --- Both for HC spending matrix and LFPR
df_cbo_hc = pd.read_excel(r'/Data/Raw/proj_by_year_group_feb23.xlsx')
df_cbo_lf = pd.read_excel(r'/Data/Raw/proj_by_year_group_lfpr_feb23.xlsx')

df_cbo_hc['2021'] = df_cbo_hc['2022']
df_cbo_lf['2021'] = df_cbo_lf['2022']

df_cbo_hc = df_cbo_hc.rename(columns={'age_group': 'agegroup'})

Import computed spending matrix
pred_hc_exp = pd.read_excel(r'/Data/Raw/2020_phc_per_capita.xls')

3

https://www.cbo.gov/system/files/2023-01/58612-Demographic-Outlook.pdf

pred_hc_exp = pred_hc_exp.rename(columns={'gender': 'sex'})

Clean for later merge
pred_hc_exp['sex'] = pred_hc_exp['sex'].str.replace('1 MALE', 'Male').str.
↪→replace('2 FEMALE', 'Female')

Pull spending matrix computed with 2020 MEPS
pred_hc_exp_2020 = pred_hc_exp[pred_hc_exp.year == 2020]

Pull variables of interest: Spending amount, sex, age group, and payer
df_hc_exp = pred_hc_exp_2020.loc[:, ['agegroup', 'sex', 'payer',␣
↪→'cms_pred_per_capita']]

df_hc_exp = pd.merge(df_hc_exp, df_cbo_hc, on=['agegroup', 'sex'])

Import assumped LFPR and unemployment matrix from BLS Dec 2021
lfpr_dec21 = pd.read_excel(r'/Data/Raw/lfpr_dec_21.xlsx')

[2]: # Collect projections of 65+ population for r+ calculation
plus_65 = df_cbo_hc.loc[(df_cbo_hc['agegroup'] == '65-84') |␣
↪→(df_cbo_hc['agegroup']== '85+')].sum(numeric_only=True, axis=0)

plus_65.name = '65_plus'
total = df_cbo_hc.sum(numeric_only=True, axis=0)
total.name = 'Total'

pop=pd.concat([plus_65.sort_index(), total.sort_index()], axis=1)
pop['Year'] = pop.index
pop['Eld Share'] = pop['65_plus']/pop['Total']
pop['Delta'] = pop['Eld Share'].diff() # This is the value used in computing␣
↪→r_plus

pop['Delta'].iloc[0] = 0 # Replaces missing 2021 value with 0

Our labor force projections use the demographic data mentioned above, as well as the Dec 2021
labor force participation and unemployment data from the Bureau of Labor Statistics. Further, we
include an assumption of declining hours worked, consistent with the most recent Social Security
Trustees Report.

[4]: # Compute labor force projections
labor_df = pd.DataFrame(columns = ['Year','Labor_Force', 'Hours_per_Week',␣
↪→'Labor_Hours'])

labor_df['Year'] = years

For each year, compute both the total number of individuals in the labor␣
↪→market and the number of hours they will work in a week, on average.

for year in years:
temp_sum = 0
for s in lfpr_dec21.Sex.unique(): # For each sex

for age_grp in lfpr_dec21['Age Group'].unique(): # For each age group

4

temp = pd.DataFrame()
temp = lfpr_dec21[(lfpr_dec21['Sex'] == s) & (lfpr_dec21['Age␣

↪→Group'] == age_grp)]
lfpr = temp['LFPR, 2021 BLS'][min(temp.index)] # Pull lfpr
employment = temp['Employment'][min(temp.index)] # Pull employment
pop_df = df_cbo_lf[(df_cbo_lf['sex'] == s) & (df_cbo_lf['age_group']␣

↪→== age_grp)][str(year)] # Pull population for age group and sex
pop_ = pop_df[min(pop_df.index)]
temp_sum += lfpr*employment*pop_/1000000 # Compute labor force, in␣

↪→millions of workers

labor_df.loc[labor_df['Year'] == year, 'Labor_Force'] = temp_sum # Store the␣
↪→year's total value

Compute hours worked
if year == min(years):

labor_df.loc[labor_df['Year'] == year, 'Hours_per_Week'] = hrs_0 #␣
↪→Initial hours worked per week

else:
labor_df.loc[labor_df['Year'] == year, 'Hours_per_Week'] =␣

↪→hrs_0*(1-hrs_dec)**(year-min(years)) # Annual decline in hours worked.

Compute total number of labor hours for a given year, in trillions of hours
labor_df['Labor_Hours'] = labor_df['Labor_Force']*labor_df['Hours_per_Week']*52/
↪→1000000

4 Growth Factors

We include several growth factors in our projections.
g1 is the growth in labor-augmenting technical progress in the Cobb-Douglas formulation for all
other output.
g2 is the annual deepening of health care capital, assumed to be zero in our base analysis but
becomes slightly positive in alternate specifications.
g3 is the growth in labor productivity in the Leontief health care production formulation.

[8]: # Compute growth factors
g_df = pd.DataFrame(columns = ['Year', 'g_1', 'g_2', 'g_3'])
g_df['Year'] = years

for year in years:
g_df.loc[g_df['Year'] == year, 'g_1'] = (1+g1)**(year-min(years))
g_df.loc[g_df['Year'] == year, 'g_2'] = (1+g2)**(year-min(years))
g_df.loc[g_df['Year'] == year, 'g_3'] = (1+g3)**(year-min(years))

5

4.1 Simulate

Now we are able to simulate our model. In practice, this means solving several systems of equations
each year. The order indicates that that later calculations depend upon earlier calculations (e.g.,
tax revenue depends on wages).
For 2021, we solve 4 separate systems in the following order:

i. Production functions
i. First-Order Conditions (FOCs)
ii. Income Identities
iii. Federal Government Sector

In future years, there are interactions between these systems, thus they cannot be solved so easily.
In addition, we must incorporate projected changes to health care demand and labor force through
demographics, as well as capital stocks based on last year’s stock and investment and depreciation.
The order, thus, is as follows:

i. Labor Force, Capital, and Health Care Spending
ii. First-Order Conditions (FOCs)
iii. Production Functions
iv. Income Identities and Federal Government Sector

Below you can find the complete specification of the model (also found in Appendix A of the original
paper):

Production Functions
- f1t = α1(g

t
1L1t)

1−β1(Kβ1
1t)

- f2t = min(
L̂2tgt3
β2

, K̂2t
β3

)

Income Identitities
- Yt = f1t + ptf2t

- f̂2t = F (demographics, income, prices) = min(
L̂2tgt3
β2

, K̂2t
β3

)
- Yt = Ct + It +Gt

- Ct = Yt − It −Gt

- It = a(r+t)Yt, with an interest elasticity of -0.2
- Gt = Deft(Yt) +NDt(population)
- Yt = wtLt + rtKt

Factors of Production
- Kt = (1− b)Kt−1 + It−1

- Lt = F (demographics, LFPR, hours, unemployment)

First Order Conditions (FOCs)
- wt = (1− β1)α1g

t
1[

Kt−K̂2t

gt1(Lt−L̂2t)
]β1

- rt = β1α1g
t
1[

Kt−K̂2tgt2
gt1(Lt−L̂2t)

]β1−1

- pt = At

f̂2t
, where

6

- At = α1(g
t
1(1− β1)(Bt)

β1Lt + β1(Bt)
β1−1Kt −Bβ1

t (gt1(Lt − L̂2t))), and
- Bt =

Kt−K̂2t

gt1(Lt−L̂2t)

Federal Government Sector
- Dft = Gt − Tt +Bft +Rt

- Tt = τYt + π(wtLt − EGHIt) + 0.05SSt

- Bft = SSt +GHCt − 0.39pt ∗Medicaid− 0.56pt ∗All_Other
- SSt = l ∗ i ∗ rep ∗ ret_pop ∗ total_labor_income
- GHCt = pt ∗ (Medicare+Medicaid+All_Other)
- Rt = Dt(r

+
t − rpt)

- Dt = Dt−1 +Dft−1, D0 = 22.3
- r+t = rt+0.045(Dt

Yt
− Dt−1

Yt−1
)− 0.57 ∗ 0.35(Dt

Yt
− Dt−1

Yt−1
)− 0.165 ∗ 0.10(Dt

Yt
− Dt−1

Yt−1
)− 1.293 ∗ (elderlyt−

elderlyt−1)

[10]: # Systems for Initial Year

Initial Production Functions
def production_init(x):

f_1 = x[0]
f_2 = x[1]
Y = x[2]
K = x[3]

F = np.empty((4))

Production Functions
F[0] = alpha1*(((g_1*L_1)**(1.0-beta1))*(K_1)**beta1) - f_1
F[1] = (g_2*K_2)/(beta3) - f_2

Income Identity
F[2] = f_1 + p_0*f_2 - Y

F[3] = K_0 - K

return F

Initial first order conditions (FOCs)
def foc_init(x):

L = labor_df.loc[labor_df['Year'] == year, 'Labor_Hours'] # Labor hours␣
↪→computed from CBO and BLS matrices

w = x[0]
r = x[1]
p = x[2]
A = x[3]
B = x[4]

7

F = np.empty((5))

First Order Conditions
F[0] = (1-beta1)*alpha1*g_1*((K-K_2)/(g_1*(L-L_2)))**beta1 - w
F[1] = beta1*alpha1*((K-K_2*g_2)/(g_1*(L-L_2)))**(beta1-1) - r
F[2] = A/f2_hat - p
F[3] = alpha1*(g_1*(1.0-beta1)*(B)**beta1*L + beta1*(B)**(beta1-1.0)*K -␣

↪→B**beta1*(g_1*(L-L_2))) - A
F[4] = (K-K_2)/(g_1*(L-L_2)) - B

return F

Initial income identities
def identities_init(x):

C = x[0]
I = x[1]
G = x[2]

F = np.empty((3))

Income Identitities
F[0] = Y_use - I - G - C
F[1] = a*Y_use - I
F[2] = Def + NDef - G

return F

Initial federal government sector
def fed_gov_init(x):

L = labor_df.loc[labor_df['Year'] == year, 'Labor_Hours'] # Labor hours␣
↪→computed from CBO and BLS matrices

Df, T, SS, Bf, R, rp, r_gov, D, r_plus, a = x

F = np.empty((10))

F[0] = G_use-T+Bf+R - Df
F[1] = tau*Y_use+pi*(w_use*L-EGHI_use)+tau_ss*SS_use - T
F[2] = SS_use - SS
F[3] = Bf_use - Bf
F[4] = D*(r_plus-rp) - R
F[5] = rp_c*r_plus - rp
F[6] = r_plus - rp - r_gov
F[7] = D_0 - D
F[8] = r_use + debt_int*(D/Y_use - D_lag/Y_lag) - for_int*(for_share*(D/

↪→Y_use - D_lag/Y_lag))-fed_int*(fed_share*(D/Y_use - D_lag/Y_lag)) -␣
↪→eld_int*(eld_del-eld_del_lag) - r_plus

8

F[9] = a_0 - a

return F

###
Systems for every other year

First order Conditions
def foc(x):

w, r, p, A, B = x

F = np.empty((5))

First Order Conditions
F[0] = (1-beta1)*alpha1*g_1*((K_-K_2/g_2)/(g_1*(L-L_2)))**beta1 - w
F[1] = beta1*alpha1*((K_-K_2*g_2)/(g_1*(L-L_2)))**(beta1-1) - r
F[2] = A/f2_hat - p
F[3] = alpha1*(g_1*(1-beta1)*((B)**beta1)*L + beta1*(B)**(beta1-1)*K_ -␣

↪→B**beta1*(g_1*(L-L_2))) - A
F[4] = (K_-K_2)/(g_1*(L-L_2)) - B

return F

Production of Healthcare and All Other output
def productions(x):

f_1 = x[0]
f_2 = x[1]
Y = x[2]
K = x[3] # Only included for convenience - computed elsewhere as K_

F = np.empty((4))

Production Functions
F[0] = alpha1*(((g_1*L_1)**(1.0-beta1))*(K_1)**beta1) - f_1
F[1] = (g_2*K_2)/(beta3) - f_2

Income Identity
F[2] = f_1 + p*f_2 - Y

F[3] = K_ - K

return F

Federal government sector and Income Identities solved simultaneously, relying␣
↪→on previous computations

def fed_gov_ids(x):
C, I, G, Df, T, SS, Bf, R, rp, r_gov, D, r_plus, a = x

9

F = np.empty((13))

Income Identitities
F[0] = Y - I - G - C
F[1] = a*Y - I
F[2] = Def + NDef - G

Federal Government
F[3] = G-T+Bf+R - Df
F[4] = tau*Y+pi*(w*L-EGHI)+tau_ss*SS - T
F[5] = ss_i*ss_l*rep*w*52*hrs_wk*plus_65/1000000000000 - SS
F[6] = fed_ghc*p + SS - Bf
F[7] = D*(r_gov) - R
F[8] = rp_c*r_plus - rp
F[9] = r_plus - rp - r_gov
F[10] = D_lag + Df_lag - D
F[11] = r + debt_int*(D/Y - D_0/Y_init) - for_int*(for_share*(D/Y - D_0/

↪→Y_init))-fed_int*(fed_share*(D/Y - D_0/Y_init)) -␣
↪→eld_int*(eld_del-eld_del_lag) - r_plus

F[12] = a_0*(1+int_el*(r_plus-r_plus_init)/(r_plus_init)) - a

return F

[5]: # The code below actually computes the variables of interest. It stores final␣
↪→projections in a DataFrame called 'projections'

The code below initializes several variables that will be updated annually␣
↪→later.

year = min(years)
Where projections will be stored
projections = pd.DataFrame(columns=['Year', 'f_1', 'f_2', 'Y', 'K',

'w', 'r', 'p', 'A', 'B', 'C', 'I', 'G',␣
↪→'Df', 'T', 'SS', 'Bf', 'R',

'rp', 'r_gov', 'D', 'r_plus', 'a'])
Growth factors
g_1 = g_df.loc[g_df['Year'] == year, 'g_1']
g_2 = g_df.loc[g_df['Year'] == year, 'g_2']
g_3 = g_df.loc[g_df['Year'] == year, 'g_3']

Factors of Production
L, L_1, L_2 = L_0, L1_0, L2_0
K, K_1, K_2 = K_0, K1_0, K2_0

Initial values for 2021.
Def = 0.9324
NDef = 0.7051

10

f2_hat = 4.255195243655630000
p_0 = 1.0

a = a_0

NDef = non_def_0

K_lag = K
I_lag = 0

f2_hat_lag = 4.255195243655630000
Medicaid = medicaid_0
Medicare = medicare_0
Other_hc = other_0
eld_pop = eld_pop_0
hrs_wrk = hrs_0

D_lag = D_0
Df_lag = 0.0

Y_lag = Y_0

eld_del, eld_del_lag = 0.0, 0.0

guess3, guess4, guess5, guess9, guess10, guess13 = [1]*3,[1]*4, [1]*5, [1]*9,␣
↪→[1]*10, [1]*13 # Arbitrary guesses for solving systems of equations

Solve initial production values
init_production = fsolve(production_init, guess4)

Pull computed output
Y_use = init_production[2]

Solve FOCs for 2021
init_foc = fsolve(foc_init, guess5)

Pull computed wage and cost of capital
w_use, r_use = init_foc[0], init_foc[1]

Solve Income Identities for 2021, using FOCs and Production
init_ids = fsolve(identities_init, guess3)

Pull computed government spending
G_use = init_ids[2]

A few more initial conditions

11

EGHI_use = 0
SS_use = 1.144994521
GHC = 2.256568945
fed_med = medicaid_0*(1-medicaid_fed_share)
fed_other = other_0*(1-other_fed_share)

Bf_use = SS_use + GHC - fed_med - fed_other

Solve initial Federal Government using FOCs and Income Identities
init_gov = fsolve(fed_gov_init, guess10)

Store all computed values as row
initial = np.concatenate(([year], init_production, init_foc, init_ids, init_gov))

Add the row to the 'projections' dataframe
projections.loc[len(projections)] = initial

Now we prepare to solve every other year

df_stuff stores many variables needed for computations, but not necessarily␣
↪→outcomes of interest.

Note, there is some overlap between 'df_stuff' and 'projections'
df_stuff = pd.DataFrame(columns=['Year', 'L','L_1', 'L_2', 'K', 'K_1', 'K_2',␣
↪→'a', 'p', 'r_plus', 'Y', 'D', 'Df', 'EGHI', 'rel_p'])

df_stuff['Year'] = years

Pull initial values from previously solved system of equations for 2021
df_stuff.loc[df_stuff['Year'] == min(years), 'p'] = init_foc[2]
df_stuff.loc[df_stuff['Year'] == min(years), 'r_plus'] = init_gov[8]
df_stuff.loc[df_stuff['Year'] == min(years), 'Y'] = init_production[2]
df_stuff.loc[df_stuff['Year'] == min(years), 'D'] = init_gov[7]
df_stuff.loc[df_stuff['Year'] == min(years), 'Df'] = init_gov[0]
df_stuff.loc[df_stuff['Year'] == min(years), 'EGHI'] = 0
df_stuff.loc[df_stuff['Year'] == min(years), 'rel_p'] = 1

Prepare DataFrame 'df_hc' which will store annual HC expenditure estimates
df_hc = pd.DataFrame(columns=['Year', 'El Adj'])
df_hc['Year'] = years

Make a column for each payer type
payers = df_hc_exp['payer'].unique()
for payer in payers:

df_hc[payer] = pd.Series(dtype=float)

Make a column for storing 'Sum of Parts'
df_hc['Sum'] = [0]*len(years)

12

Primary loop - within each iteration, a system of equations is solved to␣
↪→compute projections for a given year

Each iteration is its own year
for year in years:

if year==min(years):
continue # Initial year already computed - so skip

Indexes used to locate certain variables -- later on, can index by year,␣
↪→which makes this redundant.

index2 = int(year-min(years))
index = index2 - 1

Compute f2_hat first using Population and Spending Matrix, as well as %␣
↪→changes in price and income

price_change = (projections.loc[projections['Year'] == year-1, 'p'][index] -␣
↪→projections.loc[projections['Year'] == min(years), 'p'][0])/projections.
↪→loc[projections['Year'] == min(years), 'p'][0]

income_change = (projections.loc[projections['Year'] == year-1,␣
↪→'w'][index]*labor_df.loc[labor_df['Year'] == year-1, 'Labor_Hours'][index] \

- projections.loc[projections['Year'] == min(years),␣
↪→'w'][0]*labor_df.loc[labor_df['Year'] == min(years), 'Labor_Hours'][0])/ \

(projections.loc[projections['Year'] == min(years),␣
↪→'w'][0]*labor_df.loc[labor_df['Year'] == min(years), 'Labor_Hours'][0])

Pull current income and price elasticities
price_el = df_el.loc[df_el['Year'] == year, 'Price_Elasticity'][index2]
income_el = df_el.loc[df_el['Year'] == year, 'Income_Elasticity'][index2]

Compute combined elasticity factor
el_adj_factor = 1+price_change*price_el + income_change*income_el

Compute total spending by age group, sex, and payer
df_hc_exp['temp'] =␣

↪→round(df_hc_exp['cms_pred_per_capita'],0)*df_hc_exp[str(year)]/
↪→1000000000000*el_adj_factor*phc_nhe_adj # Using temporary rounding

Sum spending by payer category
sums = df_hc_exp.groupby('payer')['temp'].sum()

Pull values to subtract out non-federal components from GHC later on
medicaid = sums.loc['Medicaid']
other_hc = sums.loc['Other Payers and Programs']

Store health spending by payer group and compute their sum
for payer in sums.keys():

13

df_hc.loc[df_hc['Year'] == year, payer] = sums.loc[payer]
if payer != 'Total': # Use sum of parts to compute total spending for a␣

↪→year, omitting the 'Total' category
df_hc.loc[df_hc['Year'] == year, 'Sum'] += df_hc.loc[df_hc['Year']␣

↪→== year, payer]

Compute total Government Health Expenditures
df_hc['GHC'] = df_hc['Medicaid'] + df_hc['Medicare'] + df_hc['Other Payers␣

↪→and Programs']
Subtract out non-Federal Medicaid and 'Other' spending
df_hc['Fed_GHC'] = df_hc['GHC'] - (1-medicaid_fed_share)*df_hc['Medicaid'] -␣

↪→(1-other_fed_share)*df_hc['Other Payers and Programs']
Store this total demand for healthcare to be used later
f2_hat = df_hc.loc[df_hc['Year'] == year, 'Sum']

df_hc.loc[df_hc['Year'] == min(years), 'Sum'] = df_hc.loc[df_hc['Year'] ==␣
↪→min(years)+1, 'Sum'][1] # Equalize first two years

Compute employer group health insurance
df_hc['EGHI'] = 0.3*df_hc['Sum']
Compute change in EGHI
df_hc['EGHI_Growth'] = df_hc['EGHI'].diff()

Pull last year's f2_hat
f2_hat_lag = df_hc.loc[df_hc['Year'] == year-1, 'Sum']

Pull or compute values needed to solve production function and FOCs

Growth factors
g_1 = g_df.loc[g_df['Year'] == year, 'g_1'][index2]
g_2 = g_df.loc[g_df['Year'] == year, 'g_2'][index2]
g_3 = g_df.loc[g_df['Year'] == year, 'g_3'][index2]

Labor
df_stuff.loc[df_stuff['Year'] == year, 'L'] = labor_df.loc[labor_df['Year']␣

↪→== year, 'Labor_Hours']
df_stuff.loc[df_stuff['Year'] == year, 'L_2'] = f2_hat*beta2/g_3
df_stuff.loc[df_stuff['Year'] == year, 'L_1'] = df_stuff.

↪→loc[df_stuff['Year'] == year, 'L'] - df_stuff.loc[df_stuff['Year'] == year,␣
↪→'L_2']

Capital
df_stuff.loc[df_stuff['Year'] == year, 'K'] = projections.

↪→loc[projections['Year'] == year-1, 'K'][index]*(1-b)+projections.
↪→loc[projections['Year'] == year-1, 'I'][index]

df_stuff.loc[df_stuff['Year'] == year, 'K_2'] = f2_hat*beta3

14

df_stuff.loc[df_stuff['Year'] == year, 'K_1'] = df_stuff.
↪→loc[df_stuff['Year'] == year, 'K'] - df_stuff.loc[df_stuff['Year'] == year,␣
↪→'K_2']*g_2

Store as variables for solving FOCs and Production
L = df_stuff.loc[df_stuff['Year'] == year, 'L'][index2]
K_ = df_stuff.loc[df_stuff['Year'] == year, 'K'][index2]
K_1 = df_stuff.loc[df_stuff['Year'] == year, 'K_1'][index2]
K_2 = df_stuff.loc[df_stuff['Year'] == year, 'K_2'][index2]
L_1 = df_stuff.loc[df_stuff['Year'] == year, 'L_1'][index2]
L_2 = df_stuff.loc[df_stuff['Year'] == year, 'L_2'][index2]

Compute FOCs first
focs = fsolve(foc, guess5)

Pull relative price
df_stuff.loc[df_stuff['Year'] == year, 'p'] = focs[2]

Pull wage and cost of capital
w = focs[0]
r = focs[1]

Compute change in relative price
p = df_stuff.loc[df_stuff['Year'] == year, 'p'][index2]/df_stuff.

↪→loc[df_stuff['Year'] == min(years), 'p'][0]

Solve production functions
production = fsolve(productions, guess4)

Pull Output
Y = production[2]
Y_lag = df_stuff.loc[df_stuff['Year'] == year-1, 'Y'][index]
Y_init = df_stuff.loc[df_stuff['Year'] == min(years), 'Y'][0]

Pull lagged debt and deficit
D_lag = df_stuff.loc[df_stuff['Year'] == year-1, 'D'][index]
Df_lag = df_stuff.loc[df_stuff['Year'] == year-1, 'Df'][index]

Pull current and lagged measure of elderly population for r_plus␣
↪→computation

eld_del = pop['Delta'][index2]
eld_del_lag = pop['Delta'][index]
plus_65 = pop['65_plus'][index2]

Pull hours worked per week for the year
hrs_wk = labor_df['Hours_per_Week'][index2]

15

Compute defense and non-defense spending
Def = def_share*Y
NDef = non_def_share*pop['Total'][index2]

Pull lagged and initial market cost of capital
r_plus_lag = df_stuff.loc[df_stuff['Year'] == year-1, 'r_plus'][index]
r_plus_init = df_stuff.loc[df_stuff['Year'] == min(years), 'r_plus'][0]

Define EGHI, GHC and Fed GHC for computations
EGHI = df_hc['EGHI_Growth'][index2]
fed_ghc = df_hc['Fed_GHC'][index2]
ghc = df_hc['GHC'][index2]

Solve Federal Government and Identities
gov_ids = fsolve(fed_gov_ids, guess13)

Pull all projected values together and add them as a row to our final␣
↪→'projections' dataframe

current = np.concatenate(([year], production, focs, gov_ids))
projections.loc[len(projections)] = current

Populate df_stuff for next iteration
df_stuff.loc[df_stuff['Year'] == year, 'p'] = focs[2]
df_stuff.loc[df_stuff['Year'] == year, 'r_plus'] = gov_ids[11]
df_stuff.loc[df_stuff['Year'] == year, 'Y'] = production[2]
df_stuff.loc[df_stuff['Year'] == year, 'D'] = gov_ids[10]
df_stuff.loc[df_stuff['Year'] == year, 'Df'] = gov_ids[3]
df_stuff.loc[df_stuff['Year'] == year, 'EGHI'] = EGHI
df_stuff.loc[df_stuff['Year'] == year, 'rel_p'] = p

16

	MPW (2023) MODEL SIMULATION
	Computing Health Care Elasticities
	Demographics
	Growth Factors
	Simulate

