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Abstract

Hurricane Maŕıa made landfall in Puerto Rico on September 20, 2017 as a Category

4 storm and caused Puerto Rico’s entire energy grid to fail, leading to the longest

blackout in American history. The storm damaged critical infrastructure and reduced

households’ access to food, water, and medical care. Several studies of Maŕıa find

a significant, positive relationship between outage duration and several measures of

social vulnerability. Formulating the proper policy response to address this inequal-

ity requires identifying the underlying causes, and recent studies of the Southeast

United States suggest recovery procedures themselves contribute. In this paper, I ap-

ply spatial regression methods to data from power recovery crew deployments following

Hurricane Maŕıa and find, conditional on the impact of the storm itself, a significant,

positive relationship between outage duration and socioeconomic vulnerability, but no

statistically-significant relationship between two other forms of social vulnerability and

outage duration, namely vulnerability defined by the quality of available housing and

transportation and by household composition (e.g., 65+ population). This is consistent

with recent studies of the American Southeast but contradicts another recent study of

Maŕıa which relies on the same data but uses methods ill-suited for the empirical set-

ting. In addition to this primary analysis and unique to this paper, I obtain geospatial

data on Puerto Rican infrastructure to explore alternative spatial weight matrices and

test for potential biases caused by standard weighting practices in the literature. I find

no evidence of such biases.

∗I would like to thank Scott Ganz for his tremendous patience and assistance throughout this project.



1 Introduction

Hurricane Maŕıa made landfall in Puerto Rico on September 20, 2017 as a Category 4

storm and caused Puerto Rico’s entire energy grid to fail, leading to the longest blackout in

American history (Kwasinski et al., 2019). The storm damaged critical infrastructure for the

island’s communications, transportation, water supply, and wastewater treatment, reducing

households’ access to food, water, and medical care (Fischbach et al., 2020). Estimates of

the death toll reach as high as 4,645 (Kishore et al., 2018).

Several studies of Maŕıa find these harms were disproportionately shouldered by socioe-

conomically vulnerable households. Roman et al. (2019) collect data from satellite imagery

taken over a six-month period following Maŕıa’s landfall and find that poorer residents ex-

perienced longer outages. Tormos-Aponte et al. (2021) use data on the timings and loca-

tions of power restoration crew deployments by the Puerto Rico Electric Power Authority

(PREPA)—the power company responsible for Puerto Rico’s electric infrastructure—and

similarly find a positive relationship between outage duration and socioeconomic vulnera-

bility, as well as three other forms of social vulnerability. Studies of hurricanes elsewhere

in the U.S. present robust statistical to support this claim, as well (Lievanos and Horne,

2017; Coleman et al., 2023). However, formulating the proper policy response to this finding

requires identifying the underlying causes of these disparities. It is likely, for example, that

socioeconomically vulnerable households experience longer outages because they are situated

in more at-risk locations for hurricanes (Logan and Xu, 2015). Alternatively, recent studies

of the Southeast United States suggest the recovery procedures used by electric utility orga-

nizations themselves contribute, as well (Mitsova et al., 2018; Best et al., 2023; Ganz et al.,

2023). Typical residential recovery procedures used throughout the U.S (including Puerto

Rico) prioritize restoring power to the most households as quickly as possible, regardless

of any form of vulnerability (Edison Electric Institute, 2016; U.S. Department of Energy,

2018). This “colorblind” (Tormos-Aponte et al., 2021, p. 1) approach to household power

restoration may inadvertently exacerbate existing inequalities across communities of varying
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levels of socioeconomic vulnerability. These studies statistically identify the role of recovery

procedures using spatial regression techniques which both control for the direct effect of the

storm and account for various dependencies between neighboring areas.

This paper is the first to apply such methods in the context of Hurricane Maŕıa. Using

data from PREPA restoration crew deployments—the same data used in Tormos-Aponte

et al. (2021)—I estimate a series of spatial lag models to test the relationship between

socioeconomic vulnerability and power outage duration. I find a one-decile increase in so-

cioeconomic vulnerability (as measured by the CDC/ATSDR’s Social Vulnerability Index,

described in detail below) is associated with a 3.8% increase in outage duration, conditional

on the effect of the storm itself. For the median household in Puerto Rico, this trans-

lates to an additional 3 days without power. Unlike Tormos-Aponte et al. (2021), I find no

statistically-significant relationship between two other forms of vulnerability (“Household

Characteristics” and “Housing Type & Transportation”) and outage duration. These results

are robust to several alternative specifications. Further, using data on the physical locations

of power lines and major roads, this paper explores alternative weighting schemes which

may improve model fit and reveal potential biases caused by standard weighting schemes.

When estimating the spatially lagged relationship between geographically adjacent counties’

outages, current practices weight all neighbors equally regardless of whether or not a power

line or roads runs between a focal tract and that geographic neighbor. This exploration of

alternative weighting schemes which account for these dependencies suggests the standard

weighting scheme actually improves the fit of the model compared to estimates produced by

these alternatives.

This paper contributes to two literatures. First, it is the first paper to use spatial-lag

models to study the socioeconomic effects of Hurricane Maŕıa and the ensuing outage recovery

efforts. In doing so, it improves our understanding of exactly how outage recovery procedures

in Puerto Rico exacerbate outage inequalities caused by hurricanes. Second, this paper finds

similar results to studies of hurricane recoveries elsewhere in the United States, contributing
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to our understanding of American outage recovery procedures more broadly. Further, and

unique to this paper, by testing a series of spatial weight matrices which incorporate inter-

tract dependencies on power lines and major roads, I test and support the legitimacy of

the current practice of using a purely geographic-adjacency weighting scheme in this setting.

Future researchers can use these results to justify the use of this weighting scheme or may

wish to repeat the exercises presented in this paper to conduct similar tests in the context

of the storm they study.

The paper is organized as follows. Section 2 describes the data used in this study.

Section 3 describes the model estimated in this paper and the method used to implement

alternative spatial weight matrices. Section 4 presents the spatial model used, several base-

line estimates using geographic-adjacency weighting, and the results from an exploration of

alternative weighting schemes. Section 5 summarizes the findings of this paper and provides

recommendations for possible reforms.

2 Data1

2.1 Primary Data

Power outage duration data is from the Puerto Rico Electric Power Authority (PREPA).

PREPA kept detailed records of power restoration crew deployments in the aftermath of

Hurricane Maŕıa, including the geo-location and date of each deployment. These data cover

18,736 crew deployments across 777 of 945 Census tracts in Puerto Rico. Outage duration

is computed as the median number of days between Maŕıa’s landfall (September 20, 2017)

and the date of service crew deployments within each Census tract.

The Centers for Disease Control and Prevention and the Agency for Toxic Substances

and Disease Registry (CDC/ATSDR) regularly compute a Social Vulnerability Index (SVI)

1All data used in this study are publicly-available; a complete replication package is available upon
request.
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Figure 1: Variables from American Community Survey used to compute the Social Vulner-
ability Index and its four underlying themes.
Source: CDC SVI Documentation, 2016.

as a measure of social vulnerability at the tract level which is widely used to study the

differential effects of natural disasters (see, e.g., Mitsova et al. (2018); Flores et al. (2023);

Tormos-Aponte et al. (2021); Do et al. (2023); Ganz et al. (2023)). SVI is a percentile ranking

of tracts according to four distinct themes: Socioeconomic Status, Household Characteristics,

Racial and Ethnic Minority Status, and Housing Type & Transportation. The four themes

are denoted henceforth as SES, HC, REM, and HTT vulnerabilities, respectively, and they

are aggregated by the CDC/ATSDR to compute an overall SVI index (see Flanagan et al.

(2018) for details). Each theme is computed using data from the American Community

Survey (ACS) with the exact variables used to compute each theme found in Figure 1.

The SES vulnerability theme is of primary interest in this paper, while HC and HTT are

included as covariates. REM is omitted for reasons explained below. Greater SVI values

indicate higher vulnerability.

As shown in Figure 1, the REM vulnerability theme is based on tract-level prevalence

of English-speaking abilities and racial/ethnic minority populations, where minority popula-

tions are defined as those of the overall United States. This raises several flags in the context

of Puerto Rico. First, 95% of Puerto Rican households speak a language other than English

at home so the inability to speak English is unlikely to be a source of vulnerability. Second,
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99% of Puerto Ricans self-identify as Hispanic, a minority population in the overall U.S.

population. It is possible to recompute this index after omitting these variables, however,

research from the fields of sociology and demography on the fluidity of racial identification

indicates a severe, unresolved difficulty in accurately measuring race when the same survey

is administered across racially and ethnically distinct regions, e.g. the mainland U.S. and

Puerto Rico (Loveman and Muniz, 2007; Vargas-Ramos, 2015; Davenport, 2020). Notably,

according to the 2010 Census, 76% of Puerto Ricans identified as ‘White, alone’ compared

to 72% for the 50 states and the District of Columbia. In 2022, this figure was 51.1% in

Puerto Rico but barely changed in the rest of the U.S.. Because of its unclear interpretation

and volatility over time in Puerto Rico, the REM theme of vulnerability is omitted from the

analyses in this paper.

Additional data is collected to serve as covariates in our model. Tract-level population

data is from the 2017 ACS, obtained prior to Hurricane Maŕıa. The coefficient on this variable

will reflect the extent to which current restoration procedures restore power to the most

individuals as quickly as possible, as stated in official written procedures. Local maximum

wind speed comes from the National Oceanic and Atmospheric Administration’s National

Climatic Data Center and serves as another proxy for direct storm damage, alongside the

peak number of outages experienced by a tract measured as the total number of crews

deployed to that tract.

2.2 Geospatial Dependency Data

Geospatial Census tract geometries come directly from the U.S. Census Bureau. Data on

major roads comes from the U.S. Geological Survey National Transportation Dataset for

Puerto Rico. I define major roads as U.S. routes and Interstate highways, pictured in the top

panel of Figure 2. Data on power lines comes from the Homeland Infrastructure Foundation-

Level Data, a publicly-available dataset maintained by the Department of Homeland Security

containing all power transmission lines in Puerto Rico with voltages ranging from 69 kV to
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765 kV. These are pictured in the bottom panel of Figure 2. Each panel of the figure displays

a map of all Census tracts in Puerto Rico with roads and power lines overlaid in red and

blue, respectively. Tracts which intersect with either roads or power lines are shaded dark

gray. These data are used to generate alternative sets of neighbors for a given census tract,

as explained in Section 3.1.

Figure 2: Puerto Rico Census tracts. Red (top) and blue (bottom) lines are roads and power
lines, respectively. Tracts are shaded if they intersect with either roads or power lines.
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3 Model

3.1 Spatial Weight Matrices

I now explain the role of spatial weight matrices in estimating a spatial-lag regression, with

a particular focus on the different inter-tract dependencies explored in this paper. Baseline

regression estimates which use the simple geographic-adjacency weighting scheme can be

found in Section 4.

Estimating a spatial regression model requires the specification of a spatial weight matrix.

Each row i of a N ×N spatial weight matrix W contains information on tract i’s neighbors,

where, typically, Wij = 1 if i and j neighbor one another, and 0 otherwise. To be considered

a neighbor to i, tract j must share a common geographic border with i, or, equivalently, they

must be geographically adjacent. All tracts satisfying this condition form a set of neighbors

for i which is used to estimate the spatially lagged relationship between i’s outcome and its

neighbors’ outcomes with each of these neighbors receiving equal weighting in this estimation.

Consider the set of tracts presented in Figure 3. Our focal tract, labeled A, is shaded

gray while its neighbors are shaded either red, blue, or purple depending on whether or

not they are connected to A via a road, power line, or both, respectively. Tract F has no

shading because, while it is geographically adjacent to A, it is connected neither by a road

nor a power line. Traditionally, each of these neighbors would receive equal weights of 1/5

when estimating a regression. This geographic-adjacency weighting scheme forms the weight

matrix W adj. However, we can define alternative schemes which reflect inter-tract road and

power line dependencies. I define two such alternatives: W roads and W lines, which adds road

and power line dependency criteria when defining a tract’s neighbors. For example, only

tracts C, D, and E would be considered A’s neighbors in W roads while only tracts B, C,

and D would be considered A’s neighbors in W lines. In Section 4.2, I consider the space of

possible weighted sums of these three weighting schemes to explore possible biases caused

by using W adj to estimate our model, as done in Section 4.1 and common in the literature.
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Figure 3: Focal Census tract and its neighbors as defined by geographic borders (light gray),
power lines (blue), major roads (red), or all three (purple).

3.2 Spatial-Lag Model

The analyses in this paper use regression models from the field of spatial econometrics. As

explained below, the primary model used is a spatial autoregressive (SAR) model, specified

as follows:

yi = ρWcy +Xiβ + ϵ, (1)

where, for a tract i, yi is the log median outage duration and Xi is a matrix of independent

variables, including the three SVI themes, the logarithm of peak outages, the logarithm of

tract population, the logarithm of tract area in square-miles, and maximum wind speed. y

is a vector of log median outage duration for all Census tracts. The log-transformations

address the left-censored quality of these variables and is consistent with past work (e.g.,

Ganz et al. (2023)). The parameter ρ captures the extent of the spatial dependence with

respect to the outcome variable. ϵ is the random error term.

Wc is our spatial weight matrix. For the baseline results presented below, Wc = Wadj. In

later specifications, Wc is the weighted sum of the three spatial weight matrices described
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above: W , a vector containing matrices Wadj, Wroads, and Wlines, is multiplied with a corre-

sponding vector of scalar weights π, containing πadj, πroads, and πlines, where each weight lies

strictly between 0 and 1 and sum to unity, to obtain Wc = πW .

I estimate other variations of this model, as well, to show my findings are robust to model

selection (see LeSage and Pace (2009) for details on these models). A spatial Durbin model

(SDM) includes an additional vector of spatially lagged explanatory variables on the right

hand side of the equation while a spatial error model (SEM) does not include the ρ term

and instead just incorporates spatial dependence in errors, estimated as a parameter λ.

4 Results

4.1 Baseline Estimates

Table 1 contains regression estimates of several plausible models for identifying our relation-

ship of interest. In the far right column, we see estimates of a multiple linear regression

(MLR) model which does not account for possible spatial dependencies. Lagrange multi-

plier tests indicate that the MLR is misspecified, exhibiting both spatially autocorrelated

errors and a dependence on spatial lags (see Anselin (1988)), thus I estimate three spatial

econometric models which account for these sources of spatial dependence. All three spa-

tial models—SAR, SDM, and SEM—fit the data similarly well. Though the SDM produces

the largest log-likelihood statistic, pairwise likelihood ratio tests reveal this difference is not

significant. I thus settle on the SAR model which includes a spatial lag and accounts for

spatially correlated errors. Note that any given coefficient estimate is not sensitive to model

selection.

Because precise interpretation of the coefficient estimates is complicated by the feedback

loops generated by spatial spillovers, I will begin with an overview of our SAR estimates. The

spatial lag coefficient ρ is positive and significant; a focal tract’s outage duration increases

with the outage duration of its neighbors. Consistent with previous research, I also find a
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significant, positive relationship between SES vulnerability and outage duration. However,

contrary to the findings presented in Tormos-Aponte et al. (2021), I find no significant

relationship between the other vulnerability themes and outage duration. This is consistent,

however, with Ganz et al. (2023) who apply similar methods to data from the Southwest

United States. Finally, contrary to the intentions of current power restoration protocol, there

is a significant, positive relationship between the population size and outage duration. As

we will see below, however, this finding is not robust to alternative specifications.

Table 1: Regression model estimates using complete model specification

Dependent variable:

log(outage duration)
SDM SEM SAR MLR

SES vuln. 0.334∗∗ 0.340∗∗ 0.323∗∗ 0.351∗∗

(0.130) (0.111) (0.106) (0.107)
HC vuln. 0.038 −0.014 −0.023 −0.032

(0.108) (0.098) (0.094) (0.095)
HTT vuln. −0.079 −0.061 −0.059 −0.071

(0.097) (0.095) (0.094) (0.095)
log(peak outage) 0.059∗∗ 0.063∗∗ 0.063∗∗ 0.068∗∗

(0.027) (0.027) (0.027) (0.027)
log(area) 0.035 0.017 0.009 0.013

(0.035) (0.025) (0.023) (0.023)
log(population) 0.157∗∗ 0.164∗∗ 0.164∗∗ 0.165∗∗

(0.075) (0.072) (0.071) (0.072)
Max. wind speed 0.010 −0.001 −0.0003 −0.001

(0.032) (0.005) (0.004) (0.004)
ρ 0.147∗∗ 0.141∗∗

(0.053) (0.052)
λ 0.148∗∗

(0.053)

Observations 777 777 777 777
Log Likelihood -818.797 -820.064 -820.256
LM lag test statistics 7.498∗∗

LM error test statistics 7.845∗∗

LR test statistic 2.534 2.919

Note: *p < 0.1 **p < 0.05. Estimates of lagged explanatory variables omitted for SDM.
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The common partial derivative interpretation of MLR coefficient estimates does not apply

to spatial model coefficients because each focal tract is a second-order neighbor of itself.

LeSage and Pace (2009) provide a method for computing average direct and indirect effects

across all Census tracts which account for these feedback loops. According to the authors,

the interpretation of the average direct effect is “similar in spirit” to the partial derivative

interpretation of MLR coefficients. Conditional on the impact of the storm itself, a one decile

increase in SES vulnerability is directly associated with a 3.3% increase in outage duration

and a 3.8% increase after accounting for indirect impacts. For the median household, which

experienced a 78 day outage, these equate to roughly an additional 3 days without access to

power.

To demonstrate the robustness of these results, I now present a second set of SAR esti-

mates which vary the selection criteria of Census tracts and the included covariates. These

results are presented in Table 2 and can be compared directly to the SAR column in Table 1.

Column 1 omits tracts found within San Juan, reducing our sample size to 665 tracts. San

Juan, the capital of Puerto Rico, is the most densely populated area of the island, mea-

sured both by population and number of Census tracts. The high tract density of San Juan

may mask spatial dependencies found elsewhere on the island. However, the relationship

between each vulnerability theme and outage duration is not sensitive to the exclusion of

San Juan: SES is still similarly positively related to outage duration and the other themes

remain insignificantly different from zero.

Columns 2, 3, and 4 remove two of the vulnerability themes as covariates, leaving just

SES, HC, and HTT vulnerability in the model, respectively. The relationship between SES

vulnerability and outage duration weakens when other vulnerability themes are excluded

from the model but remains significant and positive. Here, the average direct effect of a one

decile increase in SES vulnerability is a 3.0% increase in outage duration and including the

indirect effects raises this to a 3.5% increase. Columns 3 and 4 indicate that the statistically

insignificant relationships between HC and HTT vulnerabilities and outage duration found
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Table 2: Alternative SAR estimates of Equation (1)

Dependent variable:

log(outage duration)
(1) (2) (3) (4)

SES vulnerability 0.296∗∗ 0.295∗∗

(0.117) (0.094)
HC vulnerability 0.096 0.080

(0.106) (0.088)
HTT vulnerability −0.083 0.033

(0.100) (0.090)
log(peak outage) 0.063∗∗ 0.062∗∗ 0.059∗∗ 0.057∗∗

(0.028) (0.026) (0.027) (0.027)
log(area) 0.023 0.014 0.038∗ 0.037∗

(0.026) (0.022) (0.021) (0.021)
log(population) 0.204∗∗ 0.160∗∗ 0.097 0.099

(0.077) (0.070) (0.068) (0.068)
Max. wind speed −0.001 −0.0004 −0.001 −0.001

(0.004) (0.004) (0.004) (0.004)
ρ 0.149∗∗ 0.143∗∗ 0.156∗∗ 0.156∗∗

(0.055) (0.052) (0.052) (0.052)

Observations 665 777 777 777
Log Likelihood -691.534 -820.487 -824.930 -825.272

Note: *p < 0.1 **p < 0.05.

previously remain so if they are the only vulnerability covariates included in the model. The

coefficient on the log of tract population remains significant and positive in columns 1 and

2 but become insignificant in columns 3 and 4.

4.2 Alternative Spatial Weight Matrices

We can now see if my baseline impact estimates are biased by the selection of our spatial

weight matrix. As described in Section 3.1, we can construct alternative weighting schemes

which incorporate inter-tract dependencies on power lines and major roads. If we find that an

alternative weighting scheme provides a better fit and a different coefficient estimate (either

higher or lower than our baseline of 0.323), then there is likely a bias introduced by ignoring
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these alternative spatial dependencies. I address this question by estimating 171 regressions,

each using a unique weighted combination of our three spatial weight matrices. Weights

πadj, πroads, and πlines are selected from [0.05, 0.90] with intervals of 0.05 such that they sum

to unity. These weights are used to compute unique weight matrices Wc, as described in

Section 3.1. I judge the fit of the model estimates obtained by these alternative weighting

schemes by their log-likelihoods and use the described grid search to find the log-likelihood-

maximizing weighting scheme. I repeat this exercise a second time while excluding tracts

in San Juan where the high tract-density may render road and power line dependencies

inconsequential. In Appendix A, I repeat this exercise yet again on a series of simulated

datasets to demonstrate its usefulness in detecting optimal weighting schemes when the

underlying data-generating dependencies change.

The two sets of results are presented in Figure 4. Each ternary plot displays the complete

range of log-likelihoods from each weighting scheme. πlines is measured on the bottom edge,

increasing from left to right. πroads is measured on the right edge, increasing from bottom

to top. πadj is measured on the left edge, increasing from top to bottom. A black dot

is placed where the set of weights is log-likelihood-maximizing. Darker (lighter) shading

indicates better (worse) fits. The left plot uses the full tract-level dataset of Puerto Rico

and the right plot excludes San Juan. These two plots indicate the best-fitting estimates are

produced by schemes which weight each geographically adjacent tract similarly, regardless

of road and power line dependencies. This best-fitting model estimate uses πadj = 0.9

and πroads = πlines = 0.05 and, when using all tracts, has a log-likelihood of −820.307,

indicating a worse fit than when using Wc = Wadj as shown in Table 1. In both datasets,

all model estimates obtained from weighting schemes which emphasize either road or power

line dependencies increase the coefficient on SES vulnerability but worsen the fit of the

model. This suggests that these alternative dependencies do not contribute meaningfully

to the recovery process and that there are likely yet more alternative, unexplored spatial

dependencies which can improve model fit.
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Figure 4: Log-likelihoods of regression estimates using various weighting schemes. The
coordinates reflect different coefficients on weight matrices Wadj, Wroads, and Wlines. Plots
(a) and (b) use outage data from all of Puerto Rico and just tracts which lie outside of San
Juan, respectively.

To confirm the result implied by the grid search, I use a genetic optimization algorithm

as part of the R package rgenoud to find the log-maximizing weight vector (Mebane, Jr. and

Sekhon, 2011). Let LogLik(M(π)) be the log-likelihood function applied to a model estimate

M of Equation (1) which uses the weighting scheme π to compute the spatial weight matrix

Wc = πW . I then solve the following maximization problem: max(LogLik(M(π))) subject

to the restriction that each weight in π lies strictly between 0 and 1. I do this for both

the full set of counties and again after excluding San Juan. The solution obtained in both

cases indicates the best fitting model uses πadj ≈ 1, consistent with the grid-search results

presented in Figure 4. This, in combination with the grid search, shows the unique π which

maximizes the log-likelihood of the model is that which puts full weight on πadj.
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5 Discussion

This paper contributes to our understanding of the disparate outage durations experienced

by communities of different SES vulnerability after Hurricane Maŕıa hit Puerto Rico in

2017. Unlike previous empirical efforts in this setting, I use spatial regression methods

which account for both the direct impact of the storm and spatial dependencies between

neighboring areas to estimate the relationship between SES vulnerability and outage duration

conditional on the direct impact of the storm itself. Consistent with evidence from elsewhere

in the United States, I find a one decile increase in SES vulnerability produces a 3.8% increase

in outage duration. I also find this estimate is robust to several alternative specifications.

These results suggest current recovery procedures exacerbate outage inequalities caused by

hurricanes across communities of different SES vulnerability levels.

Outage recovery procedures typically prioritize high-density areas in order to restore

power to the most households as quickly as possible. In doing so, however, these restoration

efforts appear to extend the outage durations experienced by communities of higher levels

of SES vulnerability. This growing literature suggests policymakers must reassess current

procedures. Shifting recovery priorities to communities which are more vulnerable is a pos-

sible solution but has the likely tradeoff of increasing overall outage durations (Ganz et al.,

2023). Given that poorer households are typically less prepared for hurricanes and less able

to respond to hurricanes after they have hit (Afsharinejad et al., 2021; Hong et al., 2021;

Flanagan et al., 2018), this may be preferable from a total cost perspective but remains

an open question for future research. Alternative solutions include improving the exist-

ing infrastructure in vulnerable communities to mitigate the direct effects of the hurricanes

themselves (Brockway et al., 2021).

This paper also provides something of a robustness check for past and future research

in this area which utilizes spatial regression methods. Past research in this area uses a

spatial weighting scheme based purely on the geographic adjacency between a focal unit of

observation and surrounding observations. The results in this paper suggest this weighting

15



scheme does not produce a biased estimate of the relationship between vulnerability and

outage duration when compared to alternative weighting schemes which incorporate power

line and road dependencies. This does not, however, mean that such a weighting scheme

is optimal for such estimation efforts. Future research should explore yet more alternative

spatial weighting schemes to improve model fit. In addition, the same weighting schemes

tested in this paper can and should be tested in other geographic settings.

Hurricanes and other major weather events will likely increase in both probability and

severity as a result of continuing changes to Earth’s climate (Seneviratne et al., 2021;

Emanuel, 2021). In turn, the number of proposals to reform power restoration procedures

and empirical studies of existing procedures will increase, as well. This study serves to

improve the quality of both.
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A Appendix

In this Appendix, I repeat the exercise found in Section 4.2 using several simulated datasets

constructed using various weights on geographic adjacency, power line, and road dependen-

cies. This serves to demonstrate that alternative spatial weighting schemes used to estimate

our model can plausibly improve the fit of our estimate if they reflect data-generating spa-

tial dependencies. I will first explain how I constructed this simulated data then present the

results.

Let I be the subset of Puerto Rican Census tracts found in the power outage data

(|I| = 777) and let Ji be the set of geographically adjacent neighbor tracts for a focal tract i.

The spatial weight matrices W adj, W roads, and W lines are those described and used elsewhere

in the paper. I first assign a shock θi ∼ N(0, 1) for each i ∈ I and set our simulated outcome

yi = θi in time period 0. For each tract in each time period t > 0, I add a weighted sum of

neighboring outcomes in the following way to form our simulated outcome variable yi:

yi,t = yi,t−1 +
∑
j∈Ji

yj,twij,

where wij = γadjW
adj
ij + γroadsW

roads
ij + γlinesW

lines
ij

I repeat this process T = 10 times to allow several iterations of spatial spillovers to occur

between neighbors. The selection of γ parameters determines the relative dependence of

a focal tract’s outcome on those of its neighbors depending on the extent of their spatial

dependencies. The γ values are strictly between 0 and 1 and sum to unity. If, e.g., γroads is
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Figure A1: Ternary plots of model log-likelihoods using simulated spatially-lagged data.
Each model is labeled by the weights used to compute the outcome variable. Dark blue
indicates strong fits while green indicates weaker fits. The black dots indicate the best
fitting weighting scheme.

very high, we would expect the log-likelihood-maximizing spatial weight matrix to have a high

πroads value. Below I use the following weighting schemes to generate four distinct simulated

datasets: γadj = 0.9, γroads = 0.05; γadj = 0.05, γroads = 0.05; γadj = 0.05, γroads = 0.9; and,

γadj = 0.4, γroads = 0.3. The explanatory variables used to predict yi are randomly selected

from a standard normal distribution. Note that this exercise is insufficient to estimate

meaningfully different SDMs since there is no spatial lag dependence in explanatory variables.

Such data could be constructed using similar methods used here but is unnecessary for this

paper.

As before, I grid search the space of possible spatial weighting schemes. Figure A1

displays a panel of ternary plots displaying log-likelihoods under different spatial weighting

schemes for each set of γ values, where darker shades indicate better fits of the data. The

black dots indicate the best fitting model. The left panel treats all geographically adjacent

neighbor similarly. As expected, the best fitting weighting schemes put the greatest weight

on W adj. The second and third plots weight power-line-adjacent neighbors and road-adjacent

neighbors most heavily, respectively. Again, the best-fitting models use schemes which put

greatest weight on W lines and W roads, respectively. The final plot uses data defined by

γadj = 0.4, γroads = 0.3, and γlines = 0.3. The best-fitting model here uses πadj = 0.4,

πroads = 0.2, and πlines = 0.4, i.e. somewhere in between the previous three.

The results here suggest that if there were indeed underlying dependencies on power lines

and/or roads in the power restoration process, the log-likelihood-reliant methods used in

this paper would pick up on them. While the data-generating and log-likelihood-maximizing

weighting schemes are not equivalent, they appear to be correlated. This supplementary

exercise adds validity to the claim that estimates obtained using Wc = Wadj are not misspec-

ified in this way. A more extensive exploration of simulated data could reveal the required

extent of dependencies on roads and power lines in the data generating process for ex post

estimates to detect meaningful differences between alternative weighting schemes.
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